
 www.veritglobal.com

Investor Deck
Deterministic Settlement Controller - "Pay Only When It's Proven Right"
Audience: CFO, CTO, VP Finance/Ops, Compliance, Payments Engineering
Use case focus: Creator / Ads / Affiliate networks (applies equally to royalties, gig,
marketplaces)

Executive Summary

High-scale payout programs (creators, affiliates, royalties) suffer recurring reconciliation noise,
dispute volume, and audit exposure. The root causes are (1) non-deterministic dataflows that
produce slightly different results when re-run, (2) per-item rounding drift that accumulates
across millions of micro-amounts, (3) disbursement decisions not explicitly bound to fresh,
provable attestations, and (4) migration/change risk with no cryptographic evidence of
correctness.

Our system fixes these by making payouts deterministic, provable, and governed: a fixed
compute order, integer numerics with one-time rounding and a carry-ledger, cryptographic
transcripts + output digests, and an acceptance matrix (Finance ACK, Tax/KYC, optional receipts)
with freshness/quorum. Funds move only when replay equals the sealed digest and the
acceptance bundle is satisfied.

Q&A

1) Situation: where the pain comes from (deep detail)

Profile: A global creator network paying 250–500k creators weekly from ad revenue, affiliate
sales, bonuses, and clawbacks across 40–100M line-items per window.

Operational realities

 Data heterogeneity: events from ad servers, ecommerce, sponsorships; mixed schemas;
late and duplicate arrivals.

 Micro-amounts at scale: tenths of a cent accrue; naive rounding per item leaks pennies.

 Frequent corrections: refunds/chargebacks, sponsor cancellations, policy tweaks.

 Compliance pressure: regulators and audit want evidence that every release met
reserves, tax/withholding, and (optional) source-of-funds checks.

 Change velocity: new payout policies, risk controls, and shard rebalancing each quarter.

Observable symptoms

 0.2–0.5% payout corrections each month due to rounding drift and late data.

 Spike of disputes ("my numbers don’t match"). Support reproduces via spreadsheets;
Engineering re-runs jobs and gets slightly different numbers.

 Slow, brittle reconciliations across providers (bank, PSP, virtual cards). No single truth
for auditors.

 Change fear: migrations revert after discovering off-by-cent errors weeks later.

Numeric example
With 5,000,000 micro-line-items/day, naive per-item rounding to cents can introduce up to 0.5¢
per item of drift: ≈ $25,000/day to reconcile. Over a month, this becomes material and
generates disputes.

2) Root causes (why traditional stacks fail)

1. Non-determinism: unordered map iterations, multi-writer races, wall-clock reads, and
hidden I/O make “same inputs → same outputs” untrue.

2. Rounding drift: floating-point/early rounding per record accumulates penny errors; no
documented bound or deterministic assignment of remainders.

3. Proof gaps at disbursement: money moves on pipeline completion, not on fresh
evidence (reserves, tax, receipts) bound to the computed results.

4. Change risk with no proofs: re-sharding and policy changes lack a cryptographic
criterion (digest equality) to promote/cutover; rollbacks are ad-hoc.

5. Audit opacity: no compact, signed record to replay the exact outputs; disputes devolve
into spreadsheets.

3) What “good” looks like (target outcomes)

 Bit-identical replay: any independent verifier recomputes outputs and gets the same
digest.

 Penny-exact books: one-time rounding with a recorded bound and deterministic
assignment of sub-cents.

 Evidence-gated disbursement: funds release only on digest equality and a satisfied
acceptance bundle (freshness + quorum).

 Safe change: canary + rollback with bounded loss; re-shard invariance proven by digest
equality across versions.

 Tiny, audit-ready artifacts: transcripts small enough to store and exchange, yet
sufficient for full verification.

4) Our solution at a glance

Deterministic Settlement System

 Fixed, published compute order: single-writer logs per (partition, window);
deterministic fold order.

 Integer numerics with late quantization: 128-bit accumulators, one-time rounding at
close; carry-ledger deterministically assigns sub-cents with ≤ ½ unit bound at the least
significant place per allocation.

 Content-addressed transcripts: sealed, append-only records containing inputs, fold
order, watermark, policy manifest hash, reason-coded decisions, and the output digest
(hash over canonical allocation records + trailer).

 Acceptance matrix: payout header binds {window_id, policy_version, output_digest} to
required attestations: ACK(Finance), CT (tax/KYC/rights), optional SPV
(receipts/headers). Enforces freshness F and quorum Q.

 Governance & change safety: deterministic canary cohorts; promotion only after N
consecutive windows meet digest equality + acceptance; rollback produces a
reason-coded, signed trail.

5) Key concepts (clear definitions)

 Window: logical settlement interval; closes under a monotone watermark. Late events
beyond policy horizon are transcripted with drop/defer reasons.

 Partition: shard with a single writer per (partition, window); avoids write races.

 Deterministic fold order: fixed order (e.g., bucket → partition); forbids unordered
iteration on payout paths.

 Policy scale (S): integer 10^k scaling for rounding; applied once at finalization.

 Carry-ledger: records per-principal remainders; assigns sub-cents deterministically with
a documented bound.

 Canonical serialization: byte-wise spec (sorted map keys, fixed-width integers,
length-prefixed fields) so heterogeneous systems produce the same digest.

 Output digest: cryptographic hash over canonical AllocationRecords plus trailer
(watermark, fold-order descriptor, policy manifest hash).

 Transcript (tiered): append-only, content-addressed segments (inputs, states, outputs),
signed root per window.

 Payout header: signed binding of {window_id, policy_version, output_digest} to the
acceptance bundle.

 Acceptance bundle/matrix: required attestations (ACK/CT/SPV) with freshness F and
quorum Q; results are reason-coded (e.g., STALE_PROOF, INSUFFICIENT_QUORUM).

 Re-shard invariance: versioned shard function + optional dual-write; promote only if
output digests are equal across versions.

 INVALID state: on overflow/violations, mark window INVALID; block; recover
deterministically from checkpoints.

6) Architecture (high-level components)

1. Policy compiler: declarative payout rules → constrained deterministic IR.

2. Deterministic execution engine: ingestion, ordering, integer accumulation, late
quantization, fold in fixed order.

3. Transcript service: emits tiered, content-addressed records + window transcript root.

4. Compatibility profile & verifier interfaces: adapters for Finance ACK, KYC/Tax, rights,
receipts (SPV, transparency, headers).

5. Governance API: activation, canary, rollback, promotion; signatures and versioning.

7) End-to-end flow (a week in the life)

Mon–Thu: ingest & compute

 Normalize events; compute idempotency keys; append to single-writer logs per partition.
Late/duplicates handled deterministically.

 Integer accumulators update at native precision; no floating-point on payout paths.

Fri 17:00: window close

 Watermark condition met for all partitions; fold in published order.

 Apply late quantization once; record carry-ledger assignments (bound ≤ ½ unit at the
last decimal per allocation).

 Seal the transcript; compute output digest; sign the transcript root.

Fri 17:05: acceptance gate

 Payout header demands: ACK(Finance) on reserves, CT(tax/withholding) for each
principal, optional SPV (ad-spend receipt). Freshness F and quorum Q enforced per
manifest.

 Any stale/missing attestation yields a reason-coded hold; unaffected principals proceed.

Fri 17:10: disbursement

 Independent replay reproduces the same digest; acceptance bundle satisfied → funds
move. If not, block with reason codes in the transcript.

Sat: late refund arrives

 Posts as new events; next window replays deterministically. Support links a dispute to the
prior transcript and the correction in the next.

8) Controls & guarantees (what we prove)

 Replay identity: same inputs → same digest (by construction).

 Penny-exact numerics: integer accumulators; one-time rounding; carry-ledger bound
≤ ½ unit per allocation.

 Evidence-gated releases: digest equality and acceptance success required; failures
recorded with reason codes.

 Auditability: tiny transcripts (vs raw data) suffice to reproduce outputs; signatures
separate transcript vs payout domains.

 Performance predictability: single-writer logs, fixed fold, and spill/merge in fixed order
keep latency predictable under load.

9) Safe change (migrations without fear)

 Deterministic canary cohorts: stable under replay; no runtime state needed.

 Promotion rules: require N consecutive windows with (digest equality ∧ acceptance
success).

 Dual-write guard (optional): emit transcripts under old/new shard functions; require
digest equality across versions before cutover.

 Rollback & freeze: on DIGEST_MISMATCH/STALE_PROOF/INSUFFICIENT_QUORUM,
freeze disbursements, re-execute prior manifest against the same transcript, re-run
acceptance, then drain quarantine.

10) Integration touchpoints

 Event Input API: JSON/Avro with idempotency keys; schema and keys provided.

 Verifier hooks: pluggable adapters for Finance ACK, CT (tax/KYC/rights), SPV
(receipts/headers), each with freshness F and quorum Q.

 Payout trigger: simple boolean gate honoring the payout header (digest-match +
acceptance success) and returning reason codes on block.

 Observability: metrics—replay equality rate, time-to-release (p95), reason-coded blocks
by type, net carry remainder.

11) KPIs & expected impact

 Replay-equality rate: ≥ 99.99% of windows match on first replay.

 Rounding drift eliminated: net carry remainders provably bounded and reconciled;
penny-exact evidence per window.

 Time-to-release (p95): watermark close → authorized disbursement target minutes, not
hours.

 Dispute rate: projected ↓ 30–60% after 2 cycles due to transcript-based proofs.

 Change MTTR: rollback + recovery bounded to a window when failures occur.

Back-of-envelope
5,000,000 line-items/day × 0.5¢ worst-case naive rounding = $25,000/day potential drift;
deterministic carry removes reconciliation noise and converts disputes into proofs.

12) Case study narrative (creator network)

1. Before: periodic corrections, rising disputes, and manual reconciliations across PSPs;
risky migrations.

2. After 6 weeks pilot (10% cohort):

o Drift eliminated in the cohort; support resolves disputes by linking transcripts.

o Finance ACK + Tax CT freshness enforced; stale proofs auto-block with reason
codes.

o Canary promotion requires 5 consecutive windows with digest equality +
acceptance success; achieved in week 4.

3. Full rollout: time-to-release p95 from 6h → 25m; disputes ↓ 42% in 60 days; no
regressions during re-shard.

13) CFO/CTO FAQs

Q: Why can’t our data warehouse jobs solve this?
A: Warehouses are great for analytics, not for deterministic settlement. They allow
non-deterministic constructs and lack acceptance gating bound to cryptographic digests and
signatures.

Q: What if a provider’s receipt is wrong?
A: The acceptance matrix treats receipts as attestations with freshness and quorum. If a receipt
fails or is stale, that principal is held with a reason code; numbers remain deterministic and
provable independent of external errors.

Q: Does this slow us down?
A: The system is designed for predictable latency: single-writer logs, fixed fold order,
deterministic spill/merge, and compressed transcripts that do not affect digests.

Q: GDPR/PII?
A: Transcripts can avoid PII by using principal IDs; proofs/attestations bind to IDs rather than raw
personal data.

14) Implementation outline (phased)

 Phase 0 (2–4 weeks): policy manifest capture, schema normalization, acceptance matrix
design, KPI baseline.

 Phase 1 (4–8 weeks): ingest/ordering + deterministic engine + transcript service for a
pilot cohort; shadow replay against existing pipeline.

 Phase 2 (4–6 weeks): acceptance hooks (Finance ACK, Tax/withholding, optional
receipts), payout header wiring, go-live on bounded cohort.

 Phase 3 (ongoing): canary → promotion; optional dual-write for re-shard; expand to full
population.

15) Risks & mitigations

 Late/missing attestations: auto-hold with reason codes; retriable without mutating
outputs.

 Overflow/invalid states: mark INVALID, block; recover from checkpoints; bounded
MTTR.

 Hot partitions: versioned shard function and re-keying protocol; digest equality across
versions before promotion.

16) Integration with your payment system — what changes on your side

Below is the minimal set of changes to slot this system in front of your existing rails (bank/PSP).
You do not replace your providers; you add a verifiable gate and a few attestations.

A. Insert a payout authorization gate (one call before you pay)

Replace any direct “compute → pay” step with:

1. Close window in the settlement engine (we expose an API/queue signal).

2. Authorize payout: call Authorize(window_id).

o Engine verifies digest equality and acceptance bundle (ACK/CT/optional SPV)
with freshness/quorum.

o Returns ALLOW or HOLD + reason codes per principal.

3. Disburse only the ALLOW set through your existing PSP/bank.

4. Post receipt (optional SPV) back to the engine (provider batch id, totals, headers). Held
principals will auto-release when proofs are fresh.

B. Add verifier hooks (attestations you already have, but now formal)

Stand up or map the following attestations as small, signed webhooks or messages:

 Finance ACK — “reserves ok for window W”: {window_id, reserves_ok, signer, expires_at}.

 Compliance/Tax CT — per principal or cohort: {principal_id or cohort, status, constraints,
expires_at}.

 Provider receipt SPV (optional) — proof that provider totals match the payable:
{window_id, provider_batch_id, totals, headers/hash, observed_at}.

We provide schemas and signatures; you can front these with your existing risk/tax/finance
systems.

C. Add a handful of fields to your payout metadata and finance DB

When you create a provider batch/payout, include the following metadata and store them in
your finance/recon tables:

 window_id, policy_version, output_digest (hash), and transcript_root (id or URL).

 provider_batch_id (from your PSP/bank).

 Reason codes for any holds (e.g., STALE_PROOF, INSUFFICIENT_QUORUM).
This links PSP settlements, GL entries, and transcripts into one audit trail.

D. Adopt the event data contract (ingest side)

 Emit usage events with idempotency keys (tenant_id, window_id, event_id) and
canonical timestamps.

 Provide principal_id, currency, amount_native at integer scale (we supply the policy scale
10^k).

 Handle late/duplicate events by policy (we expose statuses so you can monitor).

E. Scheduling & cut-offs

 Pick a window close (e.g., Fri 17:00 in a declared timezone) and align PSP banking
cut-offs.

 Configure freshness (F) for attestations (e.g., ≤24h for tax/finance, ≤60m for receipts).

F. Security & signing

 Use service accounts + mTLS for attestation hooks.

 Publish/rotate JWKs; sign ACK/CT/SPV payloads; verify signatures on our side.

G. Reconciliation changes (what your team stops doing)

 Stop spreadsheet-based re-calcs. For disputes and month-end, replay the transcript;
numbers must match the stored output_digest.

 Reconcile provider reports against the payout header and transcript (provider metadata
carries window_id and output_digest).

H. GL & reporting mapping (lightweight)

 Map each payout window to a GL batch; attach window_id, output_digest,
provider_batch_id.

 (Optional) Export carry_ledger assignments for analytics; no cash impact—it documents
deterministic sub-cent allocation.

I. Pilot path (how to roll in safely)

1. Cohort-gate 5–10% of creators/suppliers; run shadow replay for 1–2 weeks.

2. Turn on the authorization gate for the cohort; keep others as-is.

3. Promote when you’ve met N consecutive windows with (digest equality ∧ acceptance
success) and clean reconciliations.

J. PSP-specific knobs (examples)

 Most PSPs/banks let you attach metadata to transfers/batches—use this for window_id
and output_digest.

 Enable or schedule settlement reports you’ll use as SPV receipts (pull within the
configured freshness window).

 Keep your existing bank accounts, payout schedules, funding flows; the engine governs
the decision, it doesn’t replace the rail.

Net-net: you add one authorization call, two or three small attestations, a few metadata fields,
and a replay-based audit path—without changing providers or rerouting funds.

17) What you must send us (inputs & configs) — crystal clear, no rebuild required

You can wire this up with flat files (CSV/JSON), a read-only DB view, or streaming
(Kafka/Pub/Sub/Webhooks). Pick one—no platform rewrite needed. Below are the minimum
and recommended inputs.

A. Tier-0 (minimum viable) — a single daily file or feed of events

One record per earning/adjustment/refund.

Required fields

 event_id (string) — globally unique for ≥ 12 months.

 ts_occurred (ISO8601 UTC) — when the underlying business action happened.

 principal_id (string) — the payee/creator/supplier stable ID you already use.

 currency (ISO-4217) — e.g., USD, EUR.

 amount_minor (integer) — net amount in minor units (cents, pence, etc.). Use negative
for refunds/chargebacks.

 source_type (enum) — earning | bonus | adjustment | refund | reversal (choose best fit).

Nice-to-have (if you have them already)

 order_id, campaign_id, product_id, region, external_ref (strings)

 gross_minor, fees_minor, tax_minor (integers) — if you want us to compute from gross.

Sample CSV (Tier-0)

event_id,ts_occurred,principal_id,currency,amount_minor,source_type,external_ref

EVT-9f3a,2025-09-05T16:22:10Z,CRE-18472,USD,117,earning,ORD-1029

EVT-9f3b,2025-09-05T18:03:51Z,CRE-18472,USD,-17,refund,ORD-1029

We derive window_id from ts_occurred and configured timezone; we assign bucket_id internally.
No need to change your schemas to add those.

Delivery options: push to S3/GCS/SFTP; or we pull from a read-only view; or stream via
Kafka/Webhook. We provide adapters for each.

B. Tier-1 (recommended) — principal registry snapshot (daily or on change)

One row per creator/supplier/payee; no PII required if you can reference tokens.

Required fields

 principal_id (string) — stable key matching event feed.

 payout_method_token (string) — your PSP/bank customer ID or token (no raw bank
details).

 tax_status_code (string) — e.g., US_W9, US_W8BEN, EU_VAT_REG, or a code you already
use.

 withholding_rate_bps (int) — if applicable (basis points, e.g., 1000 = 10%).

 residency_country (ISO-3166-1 alpha-2) — e.g., US, DE.

 (Optional) preferred_currency, hold_flags, contract_id.

Sample CSV (Tier-1)

principal_id,payout_method_token,tax_status_code,withholding_rate_bps,residency_country

CRE-18472,psp_cus_49ab,US_W9,0,US

C. Tier-2 (attestations) — tiny messages you already know how to produce

These are small JSON payloads (or rows in a view) that confirm facts at payout time.

1. Finance ACK (window-level) — reserves/funding OK

{ "window_id": "2025-09-05/weekly", "reserves_ok": true, "signer": "fin-ops@yourco",
"expires_at": "2025-09-06T00:00:00Z" }

2. Compliance/Tax CT (principal-level or cohort) — cleared to pay

{ "principal_id": "CRE-18472", "status": "cleared", "constraints": [], "expires_at": "2025-09-
06T00:00:00Z" }

3. Provider receipt SPV (optional, window-level) — provider totals match payable

{ "window_id": "2025-09-05/weekly", "provider_batch_id": "psp_batch_8831", "totals_minor":
41833741, "headers_hash": "0xabc..." }

You can publish these via webhook, message bus, or a materialized DB view we read. We
validate freshness and signatures.

D. One-time configuration (we capture this with you)

 Window schedule & timezone — e.g., close Fridays 17:00 America/New_York.

 Currencies supported & scale — we default to minor units per ISO; can override with
policy_scale if needed.

 Acceptance matrix — which attestations (ACK/CT/SPV), freshness F, quorum Q.

 Rounding policy — ties-to-even vs ties-up; carry assignment order (we recommend
default).

 Cohort definitions — for canary/pilot (lists, predicates, or views).

E. Minimal reconciliation metadata (in your PSP/GL)

When you create a payout batch at your PSP/bank, include two metadata fields we return to
you:

 window_id and output_digest (hash). Store alongside provider_batch_id in your finance
tables.

F. Data quality expectations (lightweight)

 Uniqueness: event_id is globally unique for ≥ 12 months.

 Clock: ts_occurred in UTC (we accept timezone + offset too).

 Sign: use negative amount_minor for refunds/chargebacks.

 Latency: late events are fine—policy controls whether they land in current/next window.

Bottom line: If you can export a daily CSV of transactions and a simple registry of payees, plus
two tiny attestations at payout time, our system will do the rest—no core rebuild required.

18) If you pay using NetSuite — exact mapping & steps

Goal: keep NetSuite as system of record for AP and cash, add our authorization gate, and
avoid any ERP rebuild.

Choose one path

 Path A — Pay via PSP/bank outside NetSuite, record in NetSuite (fastest).
Use your PSP to move funds; we create Vendor Bills (or Journals) and optional Vendor
Payments for accurate books.

 Path B — Originate ACH/SEPA from NetSuite (Electronic Bank Payments SuiteApp).
Use NetSuite to create the bank file from Pay Bills; we gate which bills are eligible.

Common one-time setup in NetSuite

1. Custom Body Fields on Vendor Bill & Vendor Payment:

o custbody_payout_window_id (Text 64) — e.g., 2025-09-05/weekly

o custbody_output_digest (Text 128) — truncated digest string

o custbody_provider_batch_id (Text 64) — from PSP/bank file (if used)

o custbody_transcript_url (URL) — link to sealed transcript viewer

2. Accounts

o Expense: Creator Payout Expense

o AP: your standard Accounts Payable

o (Optional) Clearing: PSP Clearing if paying outside NetSuite and auto-matching
bank feeds

3. Vendors (creators/payees)

o Use Vendor records (1099 if applicable). Set External ID = principal_id from our
feed.

o If you plan Path B, maintain bank details & payment method (ACH/SEPA) per
vendor (Electronic Bank Payments SuiteApp).

Data you give us (already covered, NetSuite-specific notes)

 Events CSV/JSON: include principal_id that equals Vendor External ID in NetSuite.

 Principal registry: map principal_id → vendor internal/external id, tax_status_code for
1099/VAT reporting (we don’t need raw TINs).

 Attestations (Finance ACK, CT): can be produced from NetSuite (Saved Search +
webhook) or your finance systems; we just need the small JSONs.

What we return to you (per window)

We can deliver a ready-to-import CSV for Vendor Bills (and, if desired, Vendor Payments). You
can schedule a NetSuite CSV Import or use REST Web Services.

Path A — Pay via PSP/bank, record in NetSuite

Step A1: Create Vendor Bills (summary, one per vendor)

 Transaction type: Vendor Bill

 Header fields:

o Vendor: by External ID (principal_id)

o Date: window close date

o Memo: Creator payout — window {window_id}

o Custom: custbody_payout_window_id, custbody_output_digest,
custbody_transcript_url

 Expense line(s):

o Account: Creator Payout Expense

o Amount: amount in currency units (we convert from minor units)

o Department/Location/Class: optional

Sample CSV (Vendor Bills)

External
ID,Vendor,Date,Currency,Memo,custbody_payout_window_id,custbody_output_digest,custbody_t
ranscript_url,Expense Account,Expense Amount

BILL-2025-09-05-CRE-18472,CRE-18472,9/5/2025,USD,"Creator payout — window 2025-09-
05/weekly",2025-09-05/weekly,0xabc123...,https://transcripts.example/w/2025-09-05,Creator
Payout Expense,1.17

Tip: Use External ID on the Bill so re-imports are idempotent (updates, not duplicates).

Step A2: Record the external payment
Two options:

 Create a Vendor Payment per Vendor Bill (if you want AP aging accurate and payment
history). Populate custbody_provider_batch_id with the PSP payout batch.

 Or, if your PSP consolidates many creators into one transfer, post a Journal Entry to
clear AP and move cash via PSP Clearing; attach the provider report and transcript URL.

Vendor Payment CSV (optional)

External ID,Vendor,Date,Account
(AP),Memo,custbody_payout_window_id,custbody_provider_batch_id,Apply Bill External
ID,Payment Amount

PAY-2025-09-05-CRE-18472,CRE-18472,9/5/2025,Accounts Payable,"Payout — window 2025-09-
05/weekly",2025-09-05/weekly,psp_batch_8831,BILL-2025-09-05-CRE-18472,1.17

If CSV-applying payments is cumbersome, use a small SuiteScript Map/Reduce to fetch unpaid
Bills where custbody_payout_window_id = X and create matching Vendor Payments.

Bank reconciliation

 Use Bank Feeds to ingest the PSP settlement; match on provider_batch_id and total. Our
window_id & digest live on the Bill/Payment for full traceability.

Path B — Pay from NetSuite via Electronic Bank Payments (EBP)

Prereqs: EBP SuiteApp installed; vendors have ACH/SEPA details and payment method.

Step B1: Create Vendor Bills — same CSV as Path A.

Step B2: Gate eligibility using our authorization

 Run a Saved Search Bills — Eligible to Pay with filter custbody_payout_window_id =
{window_id} and Status = Open.

 (Optional) Add a custom checkbox Eligible to Pay that our integration sets only for
ALLOW vendors.

Step B3: Pay Bills → EBP

 In Pay Bills, filter by the Saved Search; pay all Eligible to Pay.

 EBP generates the NACHA/SEPA file. Put window_id in the Payment Memo and (if
format allows) include the truncated output_digest in addenda.

 We consume the EBP Payment File Administration ID as provider_batch_id.

Step B4: Post provider receipt (SPV)

 We (or you) post a tiny SPV JSON referencing the EBP batch and totals. Any holds remain
as Bills until attestations are fresh.

Field mapping — our concepts ↔ NetSuite

Our Concept NetSuite Object/Field

principal_id Vendor External ID (or internal ID)

window_id custbody_payout_window_id on Bill/Payment

output_digest custbody_output_digest on Bill/Payment

provider_batch_id custbody_provider_batch_id on Payment (and Bill memo if desired)

transcript URL custbody_transcript_url (and file attachment in File Cabinet)

amount_minor Vendor Bill Expense Amount (converted to currency units)

Operational notes

 Scale: Creating hundreds of thousands of Bills in one go is heavy. Use scheduled CSV
imports in chunks (e.g., 25–50k) or REST with a Map/Reduce script.

 Taxes/1099: Keep 1099 classification on Vendor; our CT attestation drives whether a Bill
is eligible; NetSuite 1099 reporting reads Vendor totals as usual.

 Subsidiaries & multi-currency: Include Subsidiary and Currency in the CSV if
OneWorld/multi-currency are enabled. We can supply per-subsidiary files.

 Audit trail: Attach the transcript PDF/hash to the Bill (File Cabinet). Auditors can replay
from the URL and match output_digest.

Bottom line for NetSuite:

 You import one Bill per payee per window (or per cohort) with window_id &
output_digest.

 You pay either in NetSuite (EBP) or via PSP and record Vendor Payments/Journals.

 Every transaction is linked to a replayable transcript, so Finance can prove why every
penny moved.

19) CFO case: why this matters beyond pennies

Even if individual misrounds look trivial, large-scale payout programs face asymmetric,
compounding, and tail risks that dominate the cost of "a cent here or there." This system
addresses those risks directly.

A. Quantified levers (illustrative — tune to your numbers)

 Policy/migration drift (systemic, not random):
Example: 250k creators × $80 avg = $20M/week. A subtle 0.2% logic error during a
policy change → $40,000 leakage per week (≈ $2.08M/year) if undetected.
Deterministic replay + canary + bounded-loss caps prevent broad release and surface
exact variance before cash moves.

 Dispute OPEX:
If 3% of creators open a ticket monthly (7,500 tickets) at ~$10 all-in per ticket, that’s
$75k/month (≈ $900k/year). Transcript-based proofs reliably cut disputes by ~40% in
similar programs → $360k/year saved, plus faster close.

 FX slippage & multi-currency reconciliation:
If 30% of payouts are non-USD (~$6M/week), even a 10 bps pricing/rounding mismatch
costs $6,000/week (≈ $312k/year). Canonical scaling + one-time quantization keeps
provider/books/replay on the same penny.

 Working capital & close predictability:
Bringing close forward and removing rework can reduce average revolver draw. Saving
just 3 days/month on a $10M float at 8% APR saves ≈ $78.9k/year — and reduces
late-close risk.

None of the above includes the cost of re-issuing payments, clawbacks, customer concessions,
or audit overruns. Those typically dwarf the penny math.

B. Tail-risk controls (where the real money is)

 Release gating on evidence: Money moves only when digest equality holds and the
acceptance bundle (Finance ACK, Tax/CT, optional SPV) meets freshness/quorum. This
blocks payouts when reserves aren’t ok, tax attestations are stale, or provider receipts
don’t reconcile.

 Bounded blast radius on change: Canary cohorts + bounded-loss caps + dual-write
(optional) mean a defect cannot propagate across the full population before detection.
Promotion requires consecutive windows with equality.

 Irreversible mistakes prevented: Decimal-scale errors, unordered reduce bugs, or
schema drift all surface as digest mismatch or INVALID states — stopping
disbursement and documenting the reason with signed transcripts.

 Third-party provability: A tiny, signed transcript lets counterparties (auditors, partners,
acquirers) independently replay to the same result. This reduces diligence friction and
audit fees and creates credibility you can monetize (better partner terms, lower risk
premiums).

C. Strategic upside

 Creator trust → retention & mix: Transparent, provable payouts improve creator NPS
and decrease churn, protecting high-value cohorts (top 10% often drive the majority of
GMV/engagement). Even a 0.5–1.0% churn improvement on top cohorts materially lifts
contribution margin.

 New products: With provable cashflows, you can safely introduce features like
accelerated payouts or revenue advances, often at lower funding spreads because the
risk is objectively verifiable from transcripts.

D. CFO one-liners

 “We don’t pay on hope; we pay on proofs. If proofs are stale or reconciliation fails, the
system won’t release cash — and it tells us exactly why.”

 “We’ve eliminated rework. Disputes are resolved by replaying the sealed transcript, not
by rebuilding spreadsheets.”

 “Change is controlled. Every policy change is canaried with a capped exposure and
must prove digest equality before promotion.”

 “Audit is a byproduct. Our payout ledger has cryptographic receipts per window;
auditors can self-verify.”

Technical Appendixes

Appendix A — Reason codes (minimum)

DIGEST_MISMATCH, STALE_PROOF, INSUFFICIENT_QUORUM, INVALID_SIGNATURE,
POLICY_VIOLATION, VERIFIER_UNAVAILABLE, OVERFLOW, MISSING_INPUT.

Appendix B — Acceptance matrix patterns (examples)

 Creator/Ads: ACK(Finance), CT(tax/withholding), SPV(ad-spend receipt); F ≤ 24h; Q =
2-of-N incl. Finance.

 Royalties: ACK, CT(rights/contract attestation); F ≤ 24h; Q ≥ 2.

 Travel/OTA: ACK, CT(risk/compliance), SPV(custody/issuer proof); F ≈ 5–60m; Q ≥ 2.

Appendix C — Data shapes (abridged)

AllocationRecord: window_id | policy_version | principal_id | bucket_id | amount_native |
carry_delta
Trailer: watermark | fold_order_desc | policy_manifest_hash
PayoutHeader: binds {window_id, policy_version, output_digest} to acceptance bundle (F, Q,
expiry, kinds).

Appendix D — Math & rounding bounds (intuition)

 Accumulate in integers at native scale; no floating-point on payout paths.

 Apply ROUND(S, ties-to-even) once at finalization.

 Track sub-unit remainders in the carry-ledger; assign deterministically (e.g., ascending
principal_id with stable tiebreakers).

 Enforce bound: ≤ ½ of the last decimal place per allocation; record assignments in the
transcript.

Appendix E — End-to-end 5-line example (VGOS + NetSuite)

Scenario
Window 2025-09-05/weekly. Three creators. Your policy adds a 1% bonus on net earnings
(calculated at sub-cent precision, then quantized with VGOS’s deterministic carry-ledger).
Finance must ACK reserves; Tax/Compliance must clear each creator.

A) What you send VGOS — 5 event lines (Tier-0)

event_id,ts_occurred,principal_id,currency,amount_minor,source_type,external_ref

EVT-101,2025-09-05T16:22:10Z,CRE-18472,USD,117,earning,ORD-1029

EVT-102,2025-09-05T18:03:51Z,CRE-18472,USD,-17,refund,ORD-1029

EVT-103,2025-09-05T19:45:00Z,CRE-18472,USD,5,earning,ADJ-55

EVT-201,2025-09-05T12:01:09Z,CRE-29011,USD,33,earning,CAM-889

EVT-301,2025-09-05T09:12:34Z,CRE-99007,USD,49,earning,VID-223

B) Your registry snapshot (Tier-1)

principal_id,payout_method_token,tax_status_code,residency_country

CRE-18472,psp_cus_49ab,US_W9,US

CRE-29011,psp_cus_7kq2,US_W9,US

CRE-99007,psp_cus_m1d8,UNKNOWN,BR

C) VGOS computes deterministically (integer math + late quantization)

Net earnings before bonus

 CRE-18472: 117 − 17 + 5 = 105¢

 CRE-29011: 33¢

 CRE-99007: 49¢

Policy bonus 1% (computed at sub-cent precision)

 18472 → 1.05¢

 29011 → 0.33¢

 99007 → 0.49¢
Total exact bonus: 1.87¢ → quantized to 2¢.

Deterministic carry-ledger assignment (largest fractional remainder first)

 18472 rounded = 1¢ (from 1.05¢)

 99007 gets +1¢ carry (from 0.49¢)

 29011 = 0¢ (from 0.33¢)

Final allocations (per principal)

Principal Net (¢) Bonus (¢) Payout (¢)

CRE-18472 105 1 106

CRE-29011 33 0 33

CRE-99007 49 1 50

VGOS seals the transcript and computes output_digest (example): 0x9e8f3c…71a5.

D) Attestations (Tier-2) you/your systems provide

Finance ACK (window-level)

{ "window_id": "2025-09-05/weekly", "reserves_ok": true, "signer": "fin-ops@yourco",
"expires_at": "2025-09-06T00:00:00Z" }

Compliance/Tax CT (principal-level)

{ "principal_id": "CRE-18472", "status": "cleared", "expires_at": "2025-09-06T00:00:00Z" }

{ "principal_id": "CRE-29011", "status": "cleared", "expires_at": "2025-09-06T00:00:00Z" }

{ "principal_id": "CRE-99007", "status": "hold_missing_tax", "expires_at": "2025-09-06T00:00:00Z" }

(Optional) Provider receipt SPV (will be posted after payment if Path A is used)

E) VGOS authorization result

Principal Amount (¢) Decision

CRE-18472 106 ALLOW

CRE-29011 33 ALLOW

CRE-99007 50 HOLD — reason: CT(MISSING_OR_STALE)

F) What happens in NetSuite (two paths)

Path A — Pay via PSP/bank, record in NetSuite

1. Vendor Bills (one per allowed/held principal; held bills simply won’t be paid yet)

External
ID,Vendor,Date,Currency,Memo,custbody_payout_window_id,custbody_output_digest,custbody_t
ranscript_url,Expense Account,Expense Amount

BILL-2025-09-05-CRE-18472,CRE-18472,9/5/2025,USD,"Creator payout — window 2025-09-
05/weekly",2025-09-05/weekly,0x9e8f3c…71a5,https://transcripts.example/w/2025-09-
05,Creator Payout Expense,1.06

BILL-2025-09-05-CRE-29011,CRE-29011,9/5/2025,USD,"Creator payout — window 2025-09-
05/weekly",2025-09-05/weekly,0x9e8f3c…71a5,https://transcripts.example/w/2025-09-
05,Creator Payout Expense,0.33

BILL-2025-09-05-CRE-99007,CRE-99007,9/5/2025,USD,"Creator payout — window 2025-09-
05/weekly (HOLD — CT)",2025-09-
05/weekly,0x9e8f3c…71a5,https://transcripts.example/w/2025-09-05,Creator Payout
Expense,0.50

2. External payment via PSP for ALLOWed principals only; PSP batch psp_batch_9001
totals $1.39.

3. Vendor Payments in NetSuite (optional) to reflect the PSP payment:

External ID,Vendor,Date,Account
(AP),Memo,custbody_payout_window_id,custbody_provider_batch_id,Apply Bill External
ID,Payment Amount

PAY-2025-09-05-CRE-18472,CRE-18472,9/5/2025,Accounts Payable,"Payout — window 2025-09-
05/weekly",2025-09-05/weekly,psp_batch_9001,BILL-2025-09-05-CRE-18472,1.06

PAY-2025-09-05-CRE-29011,CRE-29011,9/5/2025,Accounts Payable,"Payout — window 2025-09-
05/weekly",2025-09-05/weekly,psp_batch_9001,BILL-2025-09-05-CRE-29011,0.33

4. SPV receipt back to VGOS to close the loop:

{ "window_id": "2025-09-05/weekly", "provider_batch_id": "psp_batch_9001", "totals_minor": 139,
"headers_hash": "0x7af…" }

(Held bill for CRE-99007 remains open; when CT clears, VGOS will return ALLOW next window
and you can pay it.)

Path B — Pay from NetSuite (EBP SuiteApp)

 In Pay Bills, filter by custbody_payout_window_id = 2025-09-05/weekly and Eligible to
Pay = true (VGOS sets this only for ALLOW).

 Generate the ACH/SEPA file; use the Payment File Administration ID as
provider_batch_id.

 Post an SPV receipt referencing that batch ID and totals.

Audit & replay

 Any dispute (e.g., "I was short by a cent") → open the transcript URL, replay, show the
carry-ledger assignment and the acceptance decisions. The output_digest on each
Bill/Payment ties books to the exact computation.

Takeaway: In five lines of input and two tiny attestations, VGOS produces penny-exact, provable
payouts, gates disbursement on facts, and writes clean, auditable entries into NetSuite—without
changing your providers or rebuilding your ERP.

Appendix F — Tail-risk scenarios (and how the system contains them)

Scenario Typical impact if
undetected

How the system contains it

Policy bug introduces
a 0.2%
over-allocation

$40k/week on a $20M
run-rate; ~$2.08M/year
if persistent

Canary cohort + bounded-loss cap;
transcript variance flags before release;
promotion blocked until equality proved

Decimal scale
misconfig (e.g., cents
vs units)

Catastrophic (×100
payouts)

Digest mismatch/INVALID on first replay;
disbursement blocked; reason-coded
transcript for audit

Stale tax/KYC status
pays blocked payee

Regulatory penalties,
clawbacks, reputational
damage

Acceptance matrix requires fresh CT per
payee; stale → automatic HOLD with
reason code

Provider file drift
(format or totals)

Unreconcilable totals;
manual rework; delayed
close

SPV receipt check fails; window blocked;
provider_batch_id + headers hashed into
transcript

Unordered iteration
in legacy job

Silent per-run variances;
rolling recon effort

Deterministic IR forbids unordered
reduce; fixed fold-order makes replays
bit-identical

Re-shard migration
drift

Split-brain numbers by
cohort/shard

Versioned shard function + dual-write
guard; cutover only on digest equality
across versions

Takeaway: Even if “pennies net out,” systemic drift, compliance misses, and change risk
don’t. This system eliminates those costs and caps tail risk before cash moves.

This Q&A is designed for investor due diligence and fundraising conversations. Financial
projections are estimates based on market research and comparable company analysis.

